Fast convolution quadrature for the wave equation in three dimensions

نویسندگان

  • Lehel Banjai
  • Maryna Kachanovska
چکیده

This work addresses the numerical solution of time-domain boundary integral equations arising from acoustic and electromagnetic scattering in three dimensions. The semidiscretization of the time-domain boundary integral equations by Runge-Kutta convolution quadrature leads to a lower triangular Toeplitz system of size N . This system can be solved recursively in an almost linear time (O(N logN)), but requires the construction of O(N) dense spatial discretizations of the single layer boundary operator for the Helmholtz equation. This work introduces an improvement of this algorithm that allows to solve the scattering problem in an almost linear time. The new approach is based on two main ingredients: the near-field reuse and the application of data-sparse techniques. Exponential decay of Runge-Kutta convolution weights w n(d) outside of a neighborhood of d ≈ nh (where h is a time step) allows to avoid constructing the near-field (i.e. singular and near-singular integrals) for most of the discretizations of the single layer boundary operators (near-field reuse). The far-field of these matrices is compressed with the help of datasparse techniques, namely, H-matrices and the high-frequency fast multipole method. Numerical experiments indicate the efficiency of the proposed approach compared to the conventional RungeKutta convolution quadrature algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

Rapid Solution of the Wave Equation in Unbounded Domains: Abridged Version

Abstract We propose and analyze a new fast method for the numerical solution of time-domain boundary integral formulations of the wave equation. Discretization in time is achieved by Lubich’s convolution quadrature method and in space by a Galerkin boundary element method. We show that the arising block Toeplitz system is after a small perturbation equivalent to a a decoupled system of discreti...

متن کامل

Generalized Convolution Quadrature with Variable Time Stepping. Part II: Algorithm and Numerical Results∗

In this paper, we will address the implementation of the Generalized Convolution Quadrature (GCQ) presented and analyzed in [M. LópezFernández, S. Sauter: A Generalized Convolution Quadrature with Variable Time Stepping, Preprint 17-2011, University of Zurich (2011)] for solving linear parabolic and hyperbolic evolution equations. Our main goal is to overcome the current restriction to uniform ...

متن کامل

Efficient long-time computations of time-domain boundary integrals for 2D and dissipative wave equation

Linear hyperbolic partial differential equations in a homogeneous medium, e.g., the wave equation describing the propagation and scattering of acoustic waves, can be rewritten as a time-domain boundary integral equation. We propose an efficient implementation of a numerical discretization of such equations when the strong Huygens’ principle does not hold. For the numerical discretization, we ma...

متن کامل

A Generalized Convolution Quadrature with Variable Time Stepping

In this paper, we will present a generalized convolution quadrature for solving linear parabolic and hyperbolic evolution equations. The original convolution quadrature method by Lubich works very nicely for equidistant time steps while the generalization of the method and its analysis to non-uniform time stepping is by no means obvious. We will introduce the generalized convolution quadrature ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 279  شماره 

صفحات  -

تاریخ انتشار 2014